Physicists confirm the theory of symmetry violation..This will change Technology as we know it..

Imagine “crystals one atom or molecule thick, essentially two-dimensional planes of atoms shaved from conventional crystals,” said Nobel winner Andre Geim inNew Scientist. “Graphene is stronger and stiffer than diamond, yet can be stretched by a quarter of its length, like rubber. Its surface area is the largest known for its weight.”

This material is so advanced — and so unlike anything to come before it — that in 2010, the two scientists who’d been working on it won the Nobel Prize in Physics.

Perhaps most amazing of all, however, is that between 2008 and 2009, the price of producing this once theoretical molecule went down by a factor of ten..

chippic

Two University of Manchester scientists were awarded the 2010 Nobel Prize in physics Tuesday for their pioneering research on graphene, a one-atom-thick film of carbon whose strength, flexibility and electrical conductivity have opened up new horizons for pure physics research as well as high-tech applications.

Graphene Close-Ups

Graphene is one of the strongest, lightest and most conductive materials known to humankind. It’s also 97.3 percent transparent, but looks really cool under powerful microscopes. See our gallery of graphene images.

It’s a worthy Nobel, for the simple reason that graphene may be one of the most promising and versatile materials ever discovered. It could hold the key to everything from supersmall computers to high-capacity batteries.

Graphene’s properties are attractive to materials scientists and electrical engineers for a whole host of reasons, not least of which is the fact that it might be possible to build circuits that are smaller and faster than what you can build in silicon.

But first: What is it, exactly?

Imagine “crystals one atom or molecule thick, essentiallytwo-dimensional planes of atoms shaved from conventional crystals,” said Nobel winner Andre Geim inNew Scientist. “Graphene is stronger and stiffer than diamond, yet can be stretched by a quarter of its length, like rubber. Its surface area is the largest known for its weight.”

Geim and his colleague (and former postdoctoral assistant) Konstantin Novoselov first produced graphene in 2004 by repeatedly peeling away graphite strips with adhesive tape to isolate a single atomic plane. They analyzed its strength, transparency, and conductive properties in a paper for Sciencethe same year.

Super-Small Transistors

The Manchester team in 2008 created a 1-nanometer graphene transistor, only one atom thick and 10 atoms across. This is not only smaller than the smallest possible silicon transistor; Novoselov claimed that it could very well represent the absolute physical limit of Moore’s Law governing the shrinking size and growing speed of computer processors.

“It’s about the smallest you can get,” Novoselov told Wired Science. “From the point of view of physics, graphene is a goldmine. You can study it for ages.”

Super-Dense Data Storage

Researchers around the world have already put graphene to work. A Rice University team In 2008 created a new type of graphene-based, flash-like storage memory, more dense and less lossy than any existing storage technology. Two University of South Florida researchers earlier this year reported techniques to enhance and direct its conductivity by creating wire-like defects to send current flowing through graphene strips.

Energy Storage

The energy applications of graphene are also extraordinarily rich. Texas’s Graphene Energy is using the film to create new ultracapacitators to store and transmit electrical power. Companies currently using carbon nanotubes to create wearable electronics — clothes that can power and charge electrical devices— are beginning to switch to graphene, which is thinner and potentially less expensive to produce. Much of the emerging research is devoted to devising more ways to produce graphene quickly, cheaply and in high quantities.

Optical Devices: Solar Cells and Flexible Touchscreens

A Cambridge University team argues in a paper in September’s Nature Photonicsthat the true potential of graphene lies in its ability to conduct light as well as electricity. Strong, flexible, light-sensitive graphene could improve the efficiency of solar cells and LEDs, as well as aiding in the production of next-generation devices like flexible touch screens, photodetectors and ultrafast lasers. In particular, graphene could replace rare and expensive metals like platinum and indium, performing the same tasks with greater efficiency at a fraction of the cost.

High-Energy Particle Physics

In pure science, according to Geim, graphene “makes possible experiments with high-speed quantum particles that researchers at CERN near Geneva, Switzerland, can only dream of.” Because graphene is effectively only two-dimensional, electrons can move through its lattice structure with virtually no resistance. In fact, they behave like Heisenberg’s relative particles, with an effective resting mass of zero.

It’s slightly more complicated than this, but here’s a quick and dirty explanation. To have mass in the traditional sense, objects need to have volume; electrons squeezed through two-dimensional graphene have neither. In other words, the same properties that makes graphene such an efficient medium for storing and transmitting energy also demonstrate something fundamental about the nature of the subatomic universe.

In 2008, Geim and Novoselov handily won a Wired Science poll of that year’s Nobel Prize candidates. In 2010, Wired.com’s graphene fans finally got their wish.

http://www.wired.com/gadgetlab/2010/10/graphene/

***************************************************************************************************************************

Physicists confirm the theory of symmetry violation..This will change Technology as we know it..

The Nobel Prize in Physics 2008

Yoichiro Nambu, Makoto Kobayashi, Toshihide Maskawa

A Passion for Symmetry

The fact that our world does not behave perfectly symmetrically is due to deviations at the microscopic level. Why is there something instead of nothing? Why are there so many different elementary particles? The answers are hidden in nature’s laws of symmetry. Or rather, in two types of broken symmetries: those that existed in our universe from the very beginning and those that have spontaneously lost their original symmetry somewhere along the way.

Proton and pi-meson
The pi-meson, the messenger of the strong force that keeps the atomic nucleus together, has an unusual property. It is much lighter than the proton. Why is this? Nambu found a symmetry here that was imperfect, hidden by a spontaneous broken symmetry. This explains the pi-meson’s low mass. Nambu’s theory also claimed that the pi-meson was a composite particle – today we know that it is composed of quarks.

We are all children of broken symmetry

Broken symmetry lies behind the origins of the cosmos in the Big Bang some
14 billion years ago. If equal amounts of matter and antimatter were created, they ought to have annihilated each other, leaving only radiation. But this did not happen, there was a tiny deviation of one extra particle of matter for every 10 billion antimatter particles – enough to make our world survive. How this broken symmetry happened is still a major mystery.

Spontaneous broken symmetry

Nambu’s surprising explanation to the riddle of pi-meson’s low mass pointed to spontaneous broken symmetry. Symmetry can be broken spontaneously if a physical system drops into a new state with lower energy, hence, this occurs at the price of a symmetry violation. Although the new state does not exhibit the symmetry, Nambu discovered that the symmetry survives, albeit in a hidden form. Hence his theory permits the use of the symmetry’s mathematical properties, enabling calculations which can be compared with experiments.

Different variants of Nambu’s spontaneous broken symmetry are currently used in several areas of physics. Particle physicists believe that spontaneous broken symmetry destroyed the original symmetry and assigned particles different masses in the universe’s earliest moments. How this occurred, they hope to be able to explore at the world’s largest particle accelerator, the new LHC at CERN in Geneva.

In 1960, Nambu was the first to introduce spontaneous broken symmetry into elementary particle physics. To begin with, he worked on theoretical calculations of another remarkable phenomenon in physics, superconductivity, when electric currents suddenly flow without any resistance. Spontaneous broken symmetry that described superconductivity was later translated by Nambu into the world of elementary particles, where it became one of the corner stones of the most successful theory in particle physics – the Standard Model.

Laws of symmetry

Laws of symmetry govern the micro world

Symmetries play a decisive role in the mathematical description of the world. The basic theory for elementary particles describes three principles of mirror symmetry: the usual mirror symmetry where there should not be any difference between left and right; charge symmetry, where particles behave like antiparticles, which have exactly the same properties but the opposite charge; and time symmetry, where physical events at the micro level should be equally independent whether they occur forwards or backwards in time.

Transformation acts in the quantum world

In order to explain the mirror and charge symmetry violation that was observed by experiments, Kobayashi and Maskawa needed a third family of quarks. Only then could the quarks accomplish the act of transformation which is only possible in a quantum world. There they can switch identities time and time again, becoming another quark or an antiquark. For example, when a particle, a B-meson, decays, one of its building blocks, the bottom (b) quark can, for a brief instant, transform into one of the three possible shapes and become an up (u) quark, charm (c) quark or a top (t) quark. This process differs from what is expected for the bottom quark’s antiparticle, the anti-bottom quark, and thus the symmetry is broken.

World and Antiworld
Kobayashi and Maskawa’s theory predicted that the decay of B-meson particles was different in the world and in the antiworld.

Physicists confirm the theory of symmetry violation
As recently as 2001, the two particle detectors BaBar at Stanford, USA and Belle at Tsukuba, Japan, both detected broken symmetries independently of each other. The results were exactly as Kobayashi and Maskawa had predicted almost three decades earlier.

Quarks – the smallest building blocks of matter

When Kobayashi and Maskawa presented their theory of symmetry violation only three quarks were known, but their model needed at least six. This was a bold concept, and these speculative new quarks did appear as predicted in later experiments: charm (1974), bottom (1977) and the top quark (1995). These quarks are currently a part of the Standard Model of particle physics that unifies all the smallest building blocks of matter and three of nature’s four forces in one single theory.

Quarks

The broken symmetries described by Kobayashi and Maskawa seem to have existed in nature since the very beginning. This same symmetry violation, although on a much bigger scale, is responsible for the existence of our universe. It came as a complete surprise when it first appeared in particle physics experiments in 1964, and it is only very recently that scientists have been able to fully confirm the explanations that Kobayashi and Maskawa made in 1972. The hypothetical new quarks that were needed for the theory have also only recently appeared in physics experiments.

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2008 to Yoichiro Nambu “for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics” and to Makoto Kobayashi and Toshihide Maskawa “for the discovery of the origin of the broken symmetry which predicts the existence of at least three families of quarks in nature”.

All 2008 Nobel Laureates i Physisc

Physicists confirm the theory of symmetry violation..This will change Technology as we know it..

http://www.nobelprize.org/nobel_prizes/physics/laureates/2008/illpres.html

Blues Comments: Looking for Tech Stocks that will be the next Apple with this discovery is whats the key here imo.


Nature’s Healing Matrix
Physicists confirm the theory of symmetry violation..This will change Technology as we know it..
Why Graphene Won Scientists the Nobel Prize.
Why Graphene Won Scientists the Nobel Prize.The next big Apple Tech Stock is here within this Discovery!
Advertisements